Modeling State Legislator Networks

Ishita Gopal (iug96@psu.edu),
Taegyoon Kim, Nitheesha Nakka and Bruce Desmarais
Department of Political Science
Pennsylvania State University

Prepared for presentation at the 2021 Political Networks Conference.

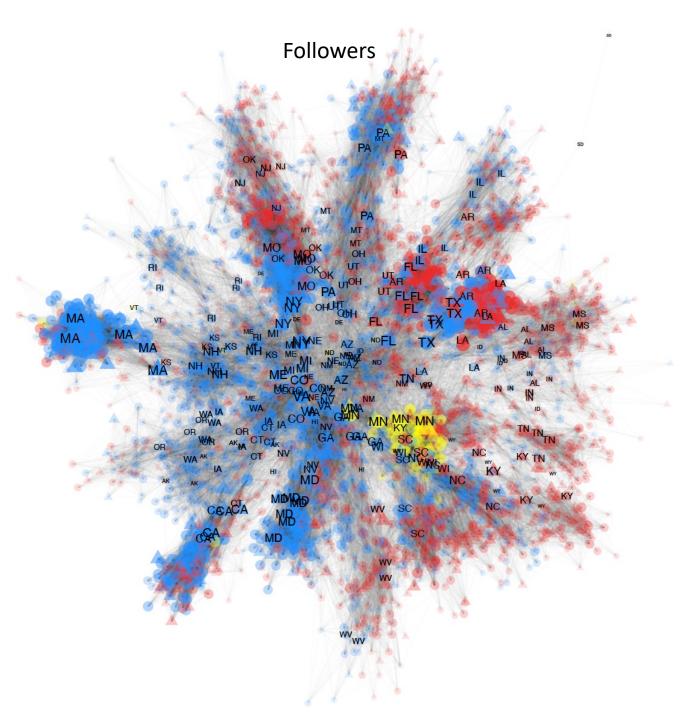
Goal

- This study collects a novel dataset on 4000+ US state legislators and models their followers, retweets and mentions networks
- The goal is to decipher the variables which help explain ties in these networks and their relative importance

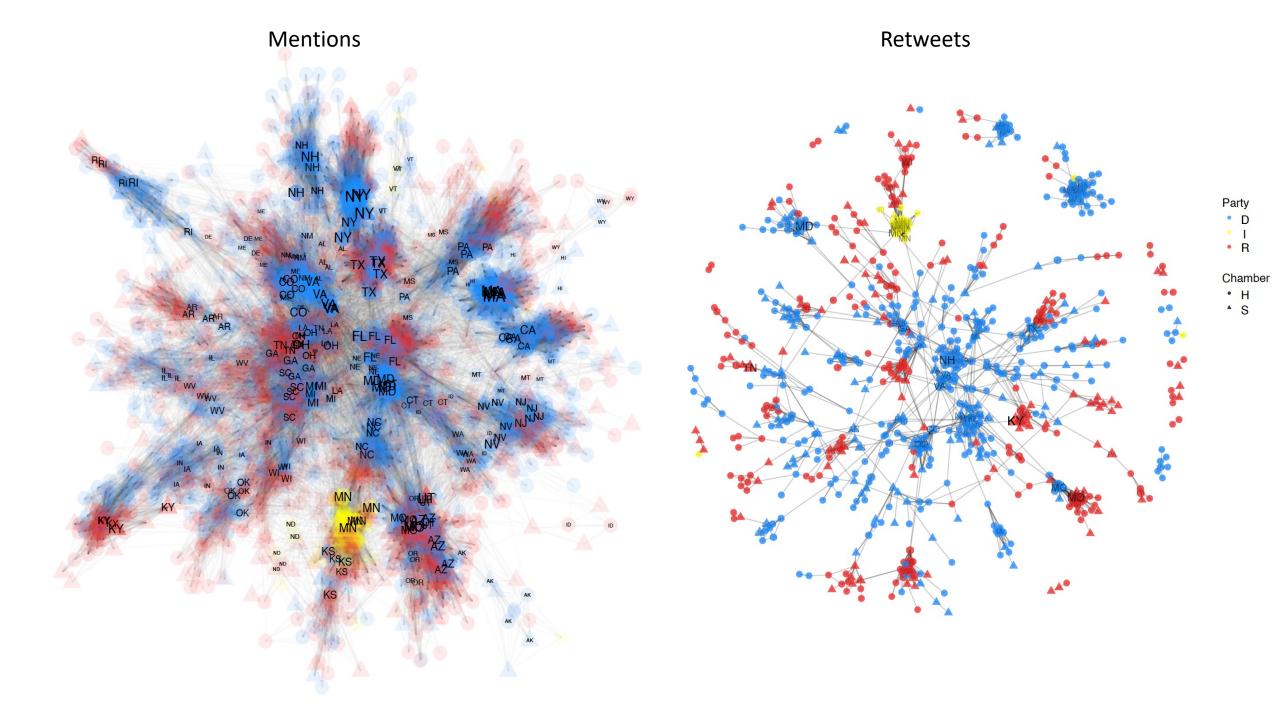
• We test the impact of party, state, chamber, policy focus, gender & distance of legislators

Theoretical Interest

- Literature on cross state diffusion uses state as the unit \rightarrow with Twiiter data we can observe individual level cross state interactions
- This data is much more fine grained & timely → allows us to observe micro level dynamics
- Content tagged interactions \rightarrow allow us to explore new questions



- Clusters of same states
- Mixing across party, chamber and state boundaries
- No usual partisan hairballs



Quadratic Assignment Procedure

- Homophily State>Party; Chamber > Gender
- Sender/Receiver
 Non D/R and Senators are more open to tying to others
- Interactions
 Partisan, chamber & identity effects
 are stronger within states than
 across states

Does policy similarity explain cross state ties?

Logit Network Model for the Followers Network

Variables	Estimate P.value			
1 Intercept	0.007 0			
2 Same Party	0.001 0			
3 Same State	0.123 0			
4 Same Chamber	0.001 0			
5 Same Gender	0.0003 0			
6 Dem Sender Effect	-0.003 0			
7 Rep Sender Effect	-0.004 0			
8 House Sender Effect	-0.001 0			
9 Female Sender Effect	-0.0001 0.720			
10 Dem Receiver Effect	-0.002 0			
11 Rep Receiver Effect	-0.003 0			
12 House Receiver Effect	-0.003 0			
13 Female Receiver Effect	0.0003 0.070			
14 Same Party * Same State	e 0.299 0			
15 Same Chamber * Same Stat	te 0.081 0			
16 Same Gender * Same State	e 0.024 0			
17 Contiguous State	0.001 0			

Bills Sponsored by Legislators

Words/Phrases which Predict the State

Remove Boiler Plate

Bills Sponsored by Legislators

Words/Phrases which Predict the State

Remove Boiler Plate

Bills Sponsored by Legislators

Lasso Logistic Regression

Words/Phrases which Predict the State

Remove Boiler Plate

Bills Sponsored by Legislators Lasso Logistic Regression Words/Phrases which Predict the State Remove Boiler Plate

Bills Sponsored by Legislators

Lasso Logistic Regression

Words/Phrases which Predict the States

Remove Boiler Plate

- 703 total words & phrases predictive of all states
- California Example:
 - * Construction Manager/General Contractor Procurement Method: Department of Water Resources
 - * Cigarette and Tobacco Products Licensing Act of 2003
- Words which most predict the state of California

refugee	week	
wildfire	pupil	
preschool	roxie	
medical	bond act	
water resources	day relative	
food assistance	information social	
fire prevention	relative american	

QAP including Policy Similarity

- Policy similarity is not significant
- Interaction

 The effect of policy similarity on the outcome is higher for those in the same state.

Logit Network Model for the Followers Network

	Variables	Estimate	P.value
1	Intercept	0.009	0
2	Same Party	0.001	0
3	Same State	0.100	0
4	Same Chamber	0.002	0
5	Same Gender	0.0004	0
6	Dem Sender Effect	-0.003	0
7	Rep Sender Effect	-0.005	0
8	House Sender Effect	-0.001	0
9	Female Sender Effect	-0.0001	0.780
10	Dem Receiver Effect	-0.002	0
11	Rep Receiver Effect	-0.004	0
12	House Receiver Effect	-0.003	0
13	Female Receiver Effect	0.0003	0.270
14	Same Party * Same State	0.295	0
15	Same Chamber * Same State	0.066	0
16	Same Gender * Same State	0.019	0
17	Contiguous State	0.001	0
18	Policy Similarity	-0.002	0.330
19	Policy Similarity * Same State	0.189	0

Future Work

• Add variables which cross states but make sense within states as well

- Further investigate what drive cross state ties?
- Analyze the cross state network